Improper Choosability and Property B

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acyclic improper choosability of graphs

We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...

متن کامل

Channel Assignment and Improper Choosability of Graphs

We model a problem proposed by Alcatel, a satellite building company, using improper colourings of graphs. The relation between improper colourings and maximum average degree is underlined, which contributes to generalise and improve previous known results about improper colourings of planar graphs.

متن کامل

Improper choosability of graphs and maximum average degree

Improper choosability of planar graphs has been widely studied. In particular, Škrekovski investigated the smallest integer gk such that every planar graph of girth at least gk is k-improper 2-choosable. He proved [9] that 6 ≤ g1 ≤ 9; 5 ≤ g2 ≤ 7; 5 ≤ g3 ≤ 6 and ∀k ≥ 4, gk = 5. In this paper, we study the greatest real M(k, l) such that every graph of maximum average degree less than M(k, l) is ...

متن کامل

Choosability, Edge Choosability, and Total Choosability of Outerplane Graphs

Let χl (G), χ ′ l (G), χ ′′ l (G), and 1(G) denote, respectively, the list chromatic number, the list chromatic index, the list total chromatic number, and the maximum degree of a non-trivial connected outerplane graph G. We prove the following results. (1) 2 ≤ χl (G) ≤ 3 and χl (G) = 2 if and only if G is bipartite with at most one cycle. (2) 1(G) ≤ χ ′ l (G) ≤ 1(G) + 1 and χ ′ l (G) = 1(G) + ...

متن کامل

Some results on (a: b)-choosability

A solution to a problem of Erdős, Rubin and Taylor is obtained by showing that if a graph G is (a : b)-choosable, and c/d > a/b, then G is not necessarily (c : d)-choosable. The simplest case of another problem, stated by the same authors, is settled, proving that every 2-choosable graph is also (4 : 2)-choosable. Applying probabilistic methods, an upper bound for the k choice number of a graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2012

ISSN: 0364-9024

DOI: 10.1002/jgt.21680